$w^{(1)}=\log \left(\frac{N-n+0.5}{n+0.5}\right)$
$w^{(1)}$ expands to a generalized form, where k_{4}, k_{5} and k_{6} determine how much weight is given to relevance and non-relevance information. $k_{4}=-0.7$ when not much relevance information is available, or else 0 .

$$
w^{(1)}=\frac{k_{5}}{k_{5}+\sqrt{R}}\left(k_{4}+\log \frac{N}{N-n}\right)+\frac{\sqrt{R}}{k_{5}+\sqrt{R}} \log \frac{r+0.5}{R-r+0.5}-\frac{k_{6}}{k_{6}+\sqrt{S}} \log \frac{n}{N-n}-\frac{\sqrt{S}}{k_{6}+\sqrt{S}} \log \frac{s+0.5}{S-s+0.5}
$$

or, it can also be written as:
$w^{(1)}=k_{4} \frac{k_{5}}{k_{5}+\sqrt{R}}+\log \left[\left(\frac{N}{N-n}\right)^{\frac{k_{5}}{k_{5}+\sqrt{R}}} \cdot\left(\frac{r+0.5}{R-r+0.5}\right)^{\frac{\sqrt{R}}{k_{s}+\sqrt{R}}} \cdot\left(\frac{N-n}{n}\right)^{\frac{k_{6}}{k_{6}+\sqrt{S}}} \cdot\left(\frac{S-s+0.5}{s+0.5}\right)^{\frac{\sqrt{S}}{k_{6}+\sqrt{S}}}\right]$

Scaling	TF	DF	QTF	Correction factor	Parameters	
$B M 0$	s_{3}	1	1		$w^{(1)}$	$\frac{q t f}{k_{3}+q t f}$
$B M 1$	$k_{2} \cdot n q \cdot \frac{a v d l-d l}{a v d l+d l}$					
$B M 15$	$s_{1} s_{3}$	$\frac{t f}{k_{1}+t f}$	$w^{(1)}$	$\frac{q t f}{k_{3}+q t f}$	$k_{2} \cdot n q \cdot \frac{a v d l-d l}{a v d l+d l}$	$s_{i}=\max \left(k_{i}, 1\right)$ or 1 if $k_{2}=0$
$B M 11$	$s_{1} s_{3}$	$\frac{t f}{k_{1} \cdot \frac{d l}{a v d l}+t f}$	$w^{(1)}$	$\frac{q t f}{k_{3}+q t f}$	$k_{2} \cdot n q \cdot \frac{a v d l-d l}{a v d l+d l}$	$s_{i}=\max \left(k_{i}, 1\right)$ or 1 if $k_{2}=0$
$B M 25$	$s_{1} s_{3}$	$\frac{t f^{c}}{K+t f^{c}}$	$w^{(1)}$	$\frac{q t f}{k_{3}+q t f}$	$k_{2} \cdot n q \cdot \frac{a v d l-d l}{a v d l+d l}$	$s_{i}=k_{i}+1, c=1+m K, m \geq 0$
					$K=k_{1}\left((1-b)+b \cdot \frac{d l}{a v d l}\right)$	

$\begin{aligned} & B M 25\left(k_{1}, k_{2}, k_{3}, b\right) \\ & \begin{array}{l}\text { The general form as a } \\ \text { function of } k_{1}, k_{2}, k_{3}, \\ b \text { and } m=0\end{array}\end{aligned} \quad w=\left(k_{1}+1\right) \cdot\left(k_{3}+1\right) \cdot \frac{t f}{k_{1}\left((1-b)+b \cdot \frac{d l}{a v d l}\right)+t f} \cdot \log \left(\frac{N-n+0.5}{n+0.5}\right) \cdot \frac{q t f}{k_{3}+q t f}+k_{2} \cdot n q \cdot \frac{a v d l-d l}{a v d l+d l}$
b and $m=0$
$\begin{aligned} & \text { The form, rearranged, } \\ & \text { after six years of trial-and- } \\ & \text { error from TREC3 to } \\ & \text { TRE }\end{aligned} \quad w=\frac{\left(k_{1}+1\right) \cdot t f}{k_{1}\left((1-b)+b \cdot \frac{d l}{a v d l}\right)+t f} \cdot \log \left(\frac{N-n+0.5}{n+0.5}\right) \cdot \frac{\left(k_{3}+1\right) \cdot q t f}{k_{3}+q t f}$

