$$w^{(1)} = \log\left(\frac{N - n + 0.5}{n + 0.5}\right)$$

 $w^{(1)}$ expands to a generalized form, where k_4 , k_5 and k_6 determine how much weight is given to relevance and non-relevance information. $k_4 = -0.7$ when not much relevance information is available, or else 0.

$$w^{(1)} = \frac{k_5}{k_5 + \sqrt{R}} \left(k_4 + \log \frac{N}{N - n} \right) + \frac{\sqrt{R}}{k_5 + \sqrt{R}} \log \frac{r + 0.5}{R - r + 0.5} - \frac{k_6}{k_6 + \sqrt{S}} \log \frac{n}{N - n} - \frac{\sqrt{S}}{k_6 + \sqrt{S}} \log \frac{s + 0.5}{S - s + 0.5} + \frac{1}{N - n} \log \frac{n}{N - n} + \frac{1}{N - n} + \frac{1}{N - n} \log \frac{n}{N - n} + \frac{1}{N -$$

or, it can also be written as:

$$w^{(1)} = k_4 \frac{k_5}{k_5 + \sqrt{R}} + \log \left[\left(\frac{N}{N - n} \right)^{\frac{k_5}{k_5 + \sqrt{R}}} \cdot \left(\frac{r + 0.5}{R - r + 0.5} \right)^{\frac{\sqrt{R}}{k_5 + \sqrt{R}}} \cdot \left(\frac{N - n}{n} \right)^{\frac{k_6}{k_6 + \sqrt{S}}} \cdot \left(\frac{S - s + 0.5}{s + 0.5} \right)^{\frac{\sqrt{S}}{k_6 + \sqrt{S}}} \right]$$

w	Scaling	TF	DF	QTF	Correction factor	Parameters
BM0		1				
<i>BM</i> 1	<i>s</i> ₃	1	<i>w</i> ⁽¹⁾	$\frac{qtf}{k_3 + qtf}$	$k_2 \cdot nq \cdot \frac{avdl - dl}{avdl + dl}$	
<i>BM</i> 15	<i>s</i> ₁ <i>s</i> ₃	$\frac{tf}{k_1 + tf}$	<i>w</i> ⁽¹⁾	$\frac{qtf}{k_3 + qtf}$	$k_2 \cdot nq \cdot \frac{avdl - dl}{avdl + dl}$	$s_i = \max(k_i, 1) \text{ or } 1 \text{ if } k_2 = 0$
<i>BM</i> 11	<i>s</i> ₁ <i>s</i> ₃	$\frac{tf}{k_1 \cdot \frac{dl}{avdl} + tf}$	<i>w</i> ⁽¹⁾	$\frac{qtf}{k_3 + qtf}$	$k_2 \cdot nq \cdot \frac{avdl - dl}{avdl + dl}$	$s_i = \max(k_i, 1)$ or 1 if $k_2 = 0$
BM 25	<i>s</i> ₁ <i>s</i> ₃	$\frac{tf^c}{K+tf^c}$	<i>w</i> ⁽¹⁾	$\frac{qtf}{k_3 + qtf}$	$k_2 \cdot nq \cdot \frac{avdl - dl}{avdl + dl}$	$s_i = k_i + 1, \ c = 1 + mK, \ m \ge 0$ $K = k_1 \left((1-b) + b \cdot \frac{dl}{avdl} \right)$
$BM25(k_1,k_2,k_3,b)$ The general form as a function of k_1 , k_2 , k_3 , b and $m = 0$.	$w = (k_1 + 1) \cdot (k_3 + 1) \cdot \frac{tf}{k_1 \left((1 - b) + b \cdot \frac{dl}{avdl} \right) + tf} \cdot \log \left(\frac{N - n + 0.5}{n + 0.5} \right) \cdot \frac{qtf}{k_3 + qtf} + k_2 \cdot nq \cdot \frac{avdl - dl}{avdl + dl}$					
$BM25(k_1,0,k_3,b)$ The form, rearranged, after six years of trial-and- error from TREC3 to TREC8 (1995-2000)	$w = \frac{(k_1+1)\cdot tf}{k_1\left((1-b)+b\cdot\frac{dl}{avdl}\right)+tf} \cdot \log\left(\frac{N-n+0.5}{n+0.5}\right) \cdot \frac{(k_3+1)\cdot qtf}{k_3+qtf}$					