SYMBOLS & NOTATION

 $D_i = \{w_{i1}, w_{i2}, ..., w_{it}\}$ represents a document (or query) vector and w_{ik} is the weight of some feature T_k in document D_i . A weight of zero is used for features that are absent from a particular document, and positive weights characterize features actually assigned. t is the number of unique terms in the document.

f_{ik}	Occurrence frequency of $T_{\scriptscriptstyle k}$ in $D_{\scriptscriptstyle i}$.	u_i	Number of unique terms in document $D_i.$
N	Collection size.	avgu	Average unique-term-length of documents.
n_k	Number of documents with feature $T_{\boldsymbol{k}}$ assigned.	b_i	Byte length of document $D_i^{}.$
$\max(f_{ik})$	Maximum frequency of all T_k in D_i .	avgb	Average byte-length of documents.
S	<pre>slope in the context of pivoted document length normalization.</pre>	G	Global collection statistics.

SMART'S TERM-WEIGHTING TRIPLE NOTATION											
$tf(f_{ik})$				df	$df(N,n_k)$			$g(G,D_i)$			
	b	1	Binary weight	x	n	1	Multiplier of 1, disregards the collections frequency	x	n	1	1, disregards length normalization factor
t	n	f_{ik}	raw term frequency	f		$\log\left(\frac{N}{n_k}\right)$	inverse collection frequency		C	$\sqrt{\sum_{k=1}^{t} w_{ik}^{2}}$	cosine normalization
	a	$0.5 + 0.5 \cdot \frac{f_{ik}}{\max(f_{ik})}$	augmented normalized term frequency (normalized to be in [0.5, 1])		t	$\log\left(\frac{N+1}{n_k}\right)$	inverse collection frequency		u	$1 - s + s \cdot \frac{u_i}{avgu}$	pivoted unique normalization
	1	$1 + \log(f_{ik})$	log	р		$\log\left(\frac{N-n_k}{n_k}\right)$	probabilistic inverse collection frequency		b	$1 - s + s \cdot \frac{b_i}{avgb}$	pivoted byte size normalization
	L	$\frac{1+\log(f_{ik})}{1+\log(avg(f_{ik}))}$	average term frequency based normalization								
	d	$1 + \log(1 + \log(f_{ik}))$	double logarithm								