
Simple Transliteration for CLIR.

Sauparna Palchowdhury1 and Prasenjit Majumder2

1 CVPR Unit, Indian Statistical Institute,
203 B T Road, Kolkata 700108, India
sauparna.palchowdhury@gmail.com

2 Computer Science & Engineering,
Dhirubhai Ambani Institute of Information and Communication Technology,

Gandhinagar 382007, India
p majumder@daiict.ac.in

Abstract. This is an experiment in cross-lingual information retrieval
for Indian languages, in a resource-poor situation. We use a simple grapheme-
to-grapheme transliteration technique to transliterate parallel query-text
between three morphologically similar Indian languages and compare the
cross-lingual and mono-lingual performance. Where a state of the art
system like the Google Translation tool performs roughly in the range
of 60-90%, our transliteration technique achieves 20-60% of the mono-
lingual performance. Though the figures are not impressive, we argue
that in situations where linguistic resources are scarce, to the point of
being non-existent, this can be a starting point of engineering retrieval
effectiveness.

1 Introduction

This is an experiment in cross-lingual information retrieval for Indian languages,
in a resource-poor situation. We use a simple grapheme-to-grapheme translitera-
tion technique to transliterate parallel query-text between three morphologically
similar Indian languages and compare the cross-lingual and mono-lingual per-
formance. Where a state of the art system like the Google Translation tool3

performs roughly in the range of 60-90%, our transliteration technique achieves
20-60% of the mono-lingual performance. Though the figures are not impres-
sive, we argue that in situations where linguistic resources are scarce, to the
point of being non-existent, this can be a starting point of engineering retrieval
effectiveness.

Bengali, Gujarati and Hindi, the three languages we work with in this exper-
iment, share some of the typical characteristics of Indian languages [1]. They are
inflectional4 and agglutinative5. Their writing systems use a phonetic alphabet,

3 http://translate.google.com/
4 inflection - In grammar, inflection is the modification of a word for expressing tense,

plurality and so on.
5 agglutinative - Having words derived from combining parts, each with a distinct

meaning.



2

where phonemes6 map to graphemes7. There is an easily identifiable mapping
between graphemes across these languages. Exploiting these similarities, we use
a grapheme-to-grapheme, rule-based transliteration [2] technique. The rules map-
ping graphemes in the two alphabets are constructed manually.

The manual construction is fairly easy for these three languages because the
graphemes in the Unicode chart are arranged in such a way that the similar-
sounding entities are at the same offset from the table origin. For example the
sound ‘k’ is the 22nd. (6th. row, 2nd. column) grapheme in all the three languages,
and one distinct grapheme represents ‘k’ in each language.

Two issues in CLIR is tackling synonymy8 and polysemy9. Translation ad-
dresses these issues, but it needs language resources like dictionaries, thesauri,
parallel corpora and comparable corpora. On the other hand transliteration
is able to move the important determinants in a query like out-of-vocabulary
(OOV) words and named-entities (NE), across languages, fairly smoothly.

We retrieve from our collections using the original query and its translated
(using the web-based Google Translation tool) and transliterated versions, and
compare the performance in the rest of the paper. The Section 2 places our
work in context, describing the related work in Indian Language IR (ILIR).
Section 3 briefly mentions our benchmark collections. A detailed description of
the experiments is in Section 4. Our transliteration technique is explained there.
The results are discussed in Section 5. We close our exposition with conclusions,
limitations and suggestions for future work in Section 6.

2 Related Work

Transliteration of query-text to a target language is an important method for
cross-language retrieval in Indian languages because language resources are scarce,
and transliteration can move NEs and OOV words fairly smoothly from one
language to another. NEs and OOV words being important determinants of
information-need in many queries, protecting them from distortion helps im-
prove retrieval effectiveness. A common next-step to transliteration is fixing the
defective NEs and OOV words. ILIR has recently been evaluated by the Forum
for Information Retrieval Evaluation10, where several transliteration techniques
were tried ([3], [4]). Kumaran et al. [5] tries combining several machine translit-
eration modules. They use English, Hindi, Marathi and Kannada, and leverage
a state-of-the art machine transliteration framework in English. Chinnakotla et
al. [2] applies a rule-based transliteration technique using Character Sequence

6 phoneme - A phoneme is the indivisible unit of sound in a given language. It is
an abstraction of the physical speech sounds and may encompass several different
phones.

7 grapheme - The smallest semantically distinguishing unit in a written language.
Alphabetic letters, numeric digits, punctuations are examples of graphemes.

8 synonymy - Being synonymous; having same meaning.
9 polysemy - A word having multiple meanings.

10 www.isical.ac.in/˜fire



3

Modelling (CSM) to English-Hindi, Hindi-English and Persian-English pairs.
Our work is an empirical approach, focusing on a few Indian languages that
share similar syntax, morphology and writing systems.

3 Benchmark Collection

The test collection11 we used is the latest offering of the 3rd. FIRE workshop
held in 2011. We used the Bengali, Gujarati and Hindi collections, and all the
50 queries in each of these languages. The queries were formulated from an
information-need expressed in English and translated to six Indian languages by
human translators.

4 Retrieval Runs

At the outset we describe the entire procedure in brief. We worked with Bengali
(bn), Gujarati (gu) and Hindi (hi). We set up retrieval runs over several varia-
tions of the indexed test collections and the queries, using Terrier-3.5 [6]. The
resources at hand were the test collections, queries, qrels, stop-word lists and
stemmed word-lists for the three languages. We used the statistical stemmer;
YASS [7].

Referring to the graphical representation of the experiment in Figure 1, Ta-
ble 1, 2 and 3 may help the reader follow the description in this paragraph. Start-
ing with a query in one language (the source language), its text was translated
and transliterated to another language (the target language). The transliteration
was redone by stopping and stemming the source. Thus each source language
text yielded three versions of that text in the target language.

The transliteration technique simply added an offset to the hexadecimal Uni-
code value of each character in the alphabet. There being no strict one-to-one
mapping between graphemes between the source and the target languages, man-
ually defined mappings were used where necessary (explained in Section 4.1 on
transliteration).

So, as an example, for Bengali as the target language, we ended up with 3
types of text in Bengali (bn.gu.g, bn.gu and bn.gu.p), sourced from Gujarati (gu)
and 3 more (bn.hi.g, bn.hi and bn.hi.p) sourced from Hindi (hi). The prefix bn.gu,
is of the form target.source, and is suffixed by letters denoting the variations. The
absence of the suffix denotes the text obtained by our transliteration technique.
The .g suffix marks the text as obtained by translation using Google Translation
tool, and the .p suffix marks the text as obtained by our transliteration technique
after pre-processing by stopping and stemming the source. Including the original
Bengali query (bn), we had 7 (3 + 3 + 1) versions of Bengali query text. Putting
all the string in a set we get R = {bn, bn.gu.g, bn.gu, bn.gu.p, bn.hi.g, bn.hi,
bn.hi.p} for one source-target language pair.

11 http://www.isical.ac.in/˜fire/data.html



4

For each of the 7 versions in set R, we set up 3 retrieval runs by varying
the query processing steps; no-processing or the empty step (e), stopping-and-
stemming (sS ), and query expansion (x ) denoted by the set R1 = {e, sS, x}.
Another 2 variations were done for each of these three; one using the topic title
and another using the title-and-description fields of the queries, denoted by the
set R2 = {T, TD}. Summing it up, we had R X R1 X R2 runs, or, 7 * 3 * 2
= 42 runs for each language. Working with 3 languages, we submitted 42 * 3 =
126 runs at the 3rd. FIRE workshop.

Fig. 1. The way the seven types of Bengali query text were generated. The diagram
flows from right to left. The three source languages are at the top right, and lines tapped
from them lead to the target language versions on the left. The bn.gu prefix denotes
a target.source language pair. g is the Google Translation tool, t is our transliteration
technique and p chips in as a stopping-and-stemming step of pre-processing before
going through t.

4.1 Transliterating Graphemes

In Unicode Standard 6.0, 128 code-points are allocated to each Indian language
script. The Devanagari script, used for Hindi (henceforth, we use the phrases
‘Hindi script’ and ‘Devanagari script’ interchangeably), assigns a grapheme to
all code-points except one, whereas the Bengali script has 36, and Gujarati 45,
missing points. The relative positions of the phonetically similar letters being
identical in the Unicode chart for the three languages, adding and subtracting



5

1. bn - The original Bengali query text
2. bn.gu.g - Translating Gujarati to Bengali using the Google Translation tool.
3. bn.gu - Transliterating Gujarati to Bengali using our technique.
4. bn.gu.p - Transliterating, after pre-processing by stopping and stemming the

query text.
5. bn.hi.g - Type 2 using Hindi as the source language.
6. bn.hi - Type 3 using Hindi.
7. bn.hi.p - Type 4 using Hindi.

Table 1. Set R. The seven types of Bengali query text. The strings are best read off
from right to left.

1. e - No processing whatsoever, query and document text remains as it is.
2. sS - Stop-words removed and remaining words were stemmed using YASS.
3. x - Query expansion (Terrier-3.5’s default; Bo1).

Table 2. Set R1. Three ways of retrieval. e is the no-processing or the empty step.
The sS step needs the collection to be indexed with stopping and stemming enabled.
For x we use the stopped and stemmed index.

1. T - Retrieval using only the title of a query.
2. TD - Retrieval using the title and description fields of a query.

Table 3. Set R2. Two more ways of retrieval, using the title and description fields of
the queries.

hex offsets worked for most cases but for the missing code-points. We had to
take care of many-to-one mappings (which occurred frequently when mapping
Hindi to the other scripts) and mapping letters to NULL (which was equivalent
to ignoring them), when a suitable counterpart was not found. Here is how we
handled such situations, described for the reader who has some familirity with
Indian scripts.

(a) When a grapheme had no counterpart in the target language: Devanagari
vowel sign OE (0x093A) was mapped to NULL (0x0). Bengali AU (0x09D7)
length mark was mapped to NULL.

(b) When a grapheme had a phonetically similar counterpart: Devanagari short
A (0x0904) was mapped to A in Bengali (0x0985) and Gujarati (0x0A85).



6

Gujarati LLA (0x0AB3) was mapped to Bengali LA (0x09B2). Hindi has a
LLA (0x0933) too.

(c) When a grapheme’s usage changed in the target language: ANUSVARA (for
a nasal intonation) is used independently in Bengali (0x0982), but in Hindi
(0x0902) it almost always resides as a dot on top of a consonant and results
in pronouncing N, so it was mapped to Bengali NA (0x09A8).

(d) VA and YA was correctly assigned. VA is pronounced YA in Bengali. Bengali
does not have a VA. Whereas YA in Bengali is YA in the other two languages,
and not YYA, which also exists.

All in all we had to manually map 18 Bengali, 8 Gujarati and 50 Hindi
graphemes, as shifting by hex offsets would not work for them. The translitera-
tion program may be download from a public repository12.

5 Results and Analysis

The results show all the 126 runs in Figure 2 and Table 4. The bar charts give
us a quick visual comparison of the runs. Our baseline is the mono-lingual run
using the original query (the leftmost bars in each of the seven stacks in each
chart). It is the best possible performance in the current set-up. The output
of the Google Translation tool is our cross-lingual baseline. It is a state of the
art tool which is expected to have made use of language resources, helping us
compare to it our resource-poor methods.

The retrieval runs show improved performance in the increasing order e <
sS < x, and T < TD. Oddly, for gu.hi T > TD.

Therefore x -TD retrieval runs (retrieval with query expansion and the title-
and-description fields) are the best results amongst all the runs. Query text
translated using the Google Translation tool performs over a wide range, from
59-87% of the mono-lingual performance. In comparison our transliteration tech-
nique’s performance ranges from 19-60%.

The pre-processing step of stopping and stemming the query text before
transliterating them does not seem to provide any benefit. It was surmised that
stopping and stemming the source text would leave behind cleaner text, as input
to the translieration step, by removing the large number of inflections, but this
is not corroborated by the results. YASS being a statistical stemmer, tuning
it to vary its output, could well be a way to experiment further with the pre-
processing.

Gujarati and Hindi seem to be morphologically closer in that the performance
of queries across these two languages are better than the cases where Bengali is
involved.

A per-query view of our results, in Figures 3 to 8, show how conversion be-
tween Bengali and the other two languages have not produced good results. The
Bengali charts are significantly sparse, as many queries simply failed to retrieve
enough relevant documents. Gujarati-Hindi conversion have been relatively bet-
ter.
12 https://bitbucket.org/sauparna/irtools/src/26e3bed0e338/mapchar.c



7

Bengali T TD

Query type e sS x e sS x

bn 0.2218 0.2538 0.2910 0.2744 0.3242 0.3704

bn.gu.g 59 60 61 60 60 62

bn.gu 23 21 23 23 26 29

bn.gu.p 22 20 21 21 22 22

bn.hi.g 66 63 60 62 59 60

bn.hi 22 25 27 22 28 31

bn.hi.p 10 23 25 11 20 25

Gujarati T TD

Query type e sS x e sS x

gu 0.2236 0.2578 0.2797 0.2611 0.2860 0.3095

gu.bn.g 64 64 64 67 69 68

gu.bn 19 20 27 20 25 30

gu.bn.p 15 18 22 17 23 29

gu.hi.g 65 67 67 72 74 77

gu.hi 54 53 60 28 30 28

gu.hi.p 25 32 37 12 17 17

Hindi T TD

Query type e sS x e sS x

hi 0.1442 0.1532 0.1706 0.1631 0.1750 0.1877

hi.bn.g 59 59 59 69 70 76

hi.bn 19 21 19 24 23 27

hi.bn.p 18 29 31 20 32 37

hi.gu.g 65 71 71 82 83 87

hi.gu 44 42 48 49 49 53

hi.gu.p 39 39 43 42 42 49

Table 4. The comparison of runs in terms of percentage of the mono-lingual perfor-
mance. The first row of each block is the MAP value for the monolingual run. For a
description of the run types refer to Table 1. The rest of the values are % of the mono-
lingual MAP. For example, at row hi.gu.g, which denotes retrieval using the query
translated from gu to hi using the Google Translation tool, and column TD and x,
the performance is 87% of the mono-lingual Hindi run. The transliteration technique
denoted by hi.gu in the same column but in the next row, makes it to 53%. Note that
our pre-processing step does not turn out to be useful.



8

T TD

Bengali

Gujarati

Hindi

Fig. 2. The six charts show the MAP values obtained for the seven kinds of retrieval
runs. Column 1 and 2 is for the T and TD runs, and a row each for the languages
Bengali, Gujarati and Hindi. And in each stack of three bars in each chart, the left-to-
right ordering of the patterned bars corresponds to the elements of the set R1 = {e,
sS, x} in order.



9

Fig. 3. bn.gu

Fig. 4. gu.bn

Fig. 5. bn.hi



10

Fig. 6. hi.bn

Fig. 7. gu.hi

Fig. 8. hi.gu



11

6 Conclusion and Future Work

We have made an attempt to make use of the similarity in the scripts of a
group of Indian languages to see how retrieval performance is affected. It could
well have worked for any pair of language, sharing these traits, whose graphemes
could be assigned a mapping manually. There are deficiencies in our methods, for
example, we have not taken care of spelling variations. A spelling using I (simple
‘i’) in one Indian language may use II (stressed ‘i’) in stead. The words of same
meaning, which are completely differently spelt in two languages are sure to
affect the performance. For example ‘vaccine’ is ‘tika’ (English transliteration)
in Bengali and Hindi, but ‘rasi’ (English transliteration) in Gujarati. Only a
dictionary could resolve such differences. One other resource that we have not
exploited in this experiment is the test collection itself. The noisy converted texts
may be augmented in some way by picking evidence from the vocabulary of the
test collections. An approximate string matching between noisy query words
and the words in the vocabulary could be helpful in identifying the unaltered
counterpart with some degree of accuracy and add or substitute them in the
query text to improve it.

References

1. Majumder, P., Mitra, M., Pal, D., Bandyopadhyay, A., Maiti, S., Pal, S., Modak,
D., Sanyal, S.: The fire 2008 evaluation exercise. Proceedings of the First Workshop
of the Forum for Information Retrieval Evaluation, 2008. 9(3) (September 2010)
10:1–10:24

2. Chinnakotla, M.K., Damani, O.P., Satoskar, A.: Transliteration for resource-scarce
languages. ACM Trans. Asian Lang. Inf. Process 9(4) (2010) 14

3. ACM Transactions on Asian Language Information Processing (TALIP) 9(3) (2010)
4. ACM Transactions on Asian Language Information Processing (TALIP) 9(4) (2010)
5. Kumaran, A., Khapra, M.M., Bhattacharyya, P.: Compositional machine translit-

eration. ACM Trans. Asian Lang. Inf. Process 9(4) (2010) 13
6. Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C., Lioma, C.: Terrier:

A High Performance and Scalable Information Retrieval Platform. In: Proceedings
of ACM SIGIR’06 Workshop on Open Source Information Retrieval (OSIR 2006).
(2006)

7. Majumder, P., Mitra, M., Parui, S.K., Kole, G., Mitra, P., Datta, K.: YASS: Yet
another suffix stripper. ACM Trans. Inf. Syst 25(4) (2007)


